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Abstract. We have studied the magnetoresistance of a two-dimensional electron gas in
an array of antidots with periodicities in the range 0.6-1.3 gm. In weak magnetic fields
(B < 10 mT) we have observed magnetoresistance oscitlations with a period of he/2eS,
where S is the area of the cell enclosed by the ballistic trajectories of the electrons. In
magnetic fields of B < 100 mT, the oscillations originating [rom the commensurability
of the cyclotron radius and the lattice period were studied. The behaviour of some
oscillations was found 1o disagree wilh the classical model of pinned electron orbits in
magnetic felds.

A two-dimensional electron gas in an array of antidots is a new system with periodi-
cally arranged scatterers, in contrast to the conventional electron-impurity system. It
gives rise to new effects, such as a pinning of ¢lectrons due to the commensurabil-
ity of the cyclotron radius and the period of the lattice [1-3], and the existence of
the two groups of carriers in a strong magnetic field [2}. Scattering by periodically
arranged antidots could lead to unusual behaviour of the interference effect, which
is responsible for electron transport in weak magnetic fields in a system with little
disorder, in particular the negative magnetoresistance [4]. In this work the electron
transport through a square antidot lattice was studied for different periodicities. The
influence of periodically arranged scatterers on the interference effects and classical
trajectories in a weak magnetic field was observed.

Our samples were Hall bars fabricated on a basis of GaAs/AlGaAs heterostruc-
tures with a high-mobility two-dimensional (2D) electron gas. The distance between
potential probes was 500 p:m; the width of the sample was 200 zm. The properties of
the original heterojunction were: electron density, ng = 5.3 x 10! cm~2; mobility,
p = (2-5) x 10° cm? V-t 5=, The array of antidots (fabricated by electron-beam
lithography and reactive plasma etching) covered the segment of the sample between
the potential probes (figure 1). We have measured nine samples with lattice periods
d = 0.6, 0.7, 0.8, 09, 1 and 1.3 pm and hole diameters 2r = 0.15-0.2 um. The
total number of antidots was (0.6-3) x 10°. Magnetoresistance was measured by
the four-probe method, using an active AC bridge at frequencies of 70-700 Hz at
temperatures of 1.3-4.2 K in magnetic fields up o 8 T

Figure 1 shows the magnetic field dependence of the magnetoresistance before
and after the patterning of antidots in the same sample. We can see that the resistance
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Figure 1. (2) Magnetoresistance in patterned (I) and bare samples (2). T = 42 K;
lattice period (patterned sample) d = 0.9 pm. (b) Mobility of the patterned samples as

a function of period 4 (open circle, sample with elliptical shapes of imposed scatterers),
Insert—sketch of the sample geometry.

of the patterned sample at zero magnetic field is six times greater than the resistance
of the bare sample. In nine samples with antidots in a magnetic field we observe
the new oscillations due to the commensurability of the cyclotron radius and the
lattice period d [1-3], and negative magnetoresistance due to the suppression of the
electron backscattering by the magnetic field [5]. However, in a strong magnetic
field the resistivity of the sample with antidots remains larger than the resistivity of
the bare sample. This may be explained by the additional scattering of electrons by
impurities induced in the process of reactive ion etching, or the existence of localized
electron orbits which appeared in some cases as a second period of the Shubnikov
oscillations [2]. Figure 1(b) shows the dependence of the electron mobility in the
patterned samples in the absence of the magnetic field. We can see that the decrease
in the mobility when the periodicity is reduced can be described by the expression
# = 13e(d — ¢)/muvg, where ¢ = 0.35 um. It means that the mean free path of
the electron is determined by the distance between antidots. The effective diameter
¢ consists of a lithographic hole diameter in the heterostructures and a depletion
length around those holes, ie. ¢ = 2r 4 2¢, where t = 0.07 um. The open circle
in figure 1(b) shows the value of mobility for the sample in which imposed scatterers
have an elliptical shape of length 0.6 um along the direction of the current. In this
case ¢ = 0.75 pum and we obtain ¢ = 60 x 10° cm® V~! s~! in accordance with
experiment. This result shows that in our samples the artificial lattice of antidots is
responsible for the electron scattering.

Let us consider the behaviour of the magnetoresistance (MR) of 2D electrons in an
antidot array in a weak magnetic field up to 10 mT. Figure 2(a) shows the dependence
of MR for samples with different periodicities. We see that negative magnetoresistance
has some features, the positions of which depend on the periodicity. Two features
in the magnetoresistance of samples with d = 0.6 xm are observed which prove the
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Figure 2. (@) Low-field dependence of the resistance on B for samples with different
lattice periods d: (1) 0.8 um, (2) 0.7 um, (3) 06 pum; T = L7 K. (b) Period of
low-field oscillations as a function of d—2, The solid curve is given by By = hce/el?.
Insert—sketch of the electron trajectories contributing to Aharonov-Bohm osciltations.

oscillatory character of its behaviour. As the lattice period increases, the value of the
negative MR and the amplitude of oscillations decrease; at higher magnetic fields the
positive classical magnetoresistance appears. Therefore the second oscillation is not
observed for the samples with period d = 0.7 um and 0.8 gm because of the mono-
tonic component of the classical magnetoresistance. The amplitude of oscillations
and the value of the negative MR increase with decreasing temperature. There are no
oscillations in the samples with d > 1um. It should be noted that the dependence
of MR on B does not quite agree with the theory for the 2D case [4]. If we use the
expression for MR in our case for an estimation and compare with the theory, we
obtain L, ~ 1-2 ym.

Next we discuss our results, More unambiguously, the Aharonov-Bohm effect, due
to the intereference of electron waves moving along closed trajectories in opposite
directions [6], is responsible for the oscillations in weak magnetic fields. These
oscillations in disordered conductors were first observed by Sharvin and Sharvin [7]
in the conductance of long cylinders with small diameters. In this case oscillations
are due to the interference of pair-electron states diffusing around closed trajectories
in opposite directions with a period AB = he/2enr?, where r is the radius of the
cylinder. The conditions for the observation of Aharonov—Bohm oscillations are {, <
L, <« L, where [, is the elastic mean free path and L is the perimeter of the cylinder.
For thin films of gold and copper these oscillations, with period &, = hc/2e, were
observed in the sampie for the network geometry [8], i.e. nearly the same as that
used in our paper. It should be noted that in all cases hc/2e Aharonov-Bohm
oscillations were observed in the ‘dirty limit’ when !, <« L. Recently Smith et al
[9] have reported the hc/e Aharonov-Bohm effect in a high-mobility 2D electron
gas in a grid-like structure, where the antidot covered almost the whole area of
the superlattice unit cell. In this case the interference of the edge states rotating
around the antidots was observed in high magnetic fields [10]. Our case differs from
that mentioned above: there are a small number of impurities in our samples and
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electrons are scattered by antidots; also, the magnetic field is too low to influence
the classical motion of the electrons. Thus, among ali possible trajectories, let us
consider the closed paths as shown in the insert of figure 2{a). An electron travels
ballistically from ane antidot to another and has two identical closed trajectories
reversed in time. The interference of these trajectories leads to magnetoconductance
oscillations with period hef2el®. We believe that these closed paths are responsible
for the observed effect. Oscillations with smaller periods were not found because the
corresponding trajectory perimeter is larger than L ,. Oscillations with a larger period,
corresponding to trajectories which lie inside one unit cell, were not observed because
of the contribution of the positive magnetoresistance. The circles in figure 2(b) show
the period of oscillation as a function of d~2; the solid curve shows the results of
calculating A B from the equation AB = hc/2el?, where { = 2V(d — ¢/2) (see
the insert in figure 2} and ¢ = 2r + 2¢. To calculate A B we take into account the
value of the depletion region around the antidots, ¢, which was obtained from mobility
measurements (figure 1(b)). We see good agreement between experimental values and
our calculations without the use of adjustable parameters. It should be noted that the
relative numbers of electron trajectories shown in the insert of figure 2 are negligibly
small and for a considerable contribution to the conductivity the electron scattering by
antidots must be partially diffuse. However, completely diffuse scattering suppresses
Aharonov-Bohm oscillations because of the averaging of the closed trajectories. A
moie detailed analysis will require further theoretical work for systems with periodic
lattices of scatterers. It is possible to explain the observed oscillatory behaviour of
the conductivity as being due to the influence on the electron energy spectrum of the
magnetic Rux penetrating the unit cell of the system [11]. However, in this case the
period of the oscillations should be equal to hcfed?, which is not consistent with oux
experiments. Moreover, these oscillations persist in strong magnetic fields, in contrast
to our experimental results.
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Figure 3. {g) Commensurability oscillations and negative magnetoresistance for two
samples with different periods 4. Arrows indicate the features in the negative magne-
toresistanice curve. (b) Magnetoresistance oscillations from samples with different lattice
periods. Top curve—sample with elliptical shaped scatterers of length 0.6 pm and width
0.2 pm; other curves—samples with hole-shaped scatterers of diameter 2r = 0.2 um.
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Let us consider the feature in the magnetoconductance in higher magnetic fields
up to 0.5 T. Figure 3(a) shows the dependence of MR on B for two samples with
different lattice periods. We see oscillations with an amplitude which is much larger
than that of the Aharonov-Bohm oscillations and a negative magnetoresistance which
begins to saturate in magnetic fields indicated by an arrow. As pointed out earlier,
these additional oscillations are due to the commensurability of the cyclotron radius
and the lattice period [1,2]. The saturation of the magnetoresistance is a manifesta-
tion of the skipping orbit around the antidots [12] when 2R} = d — ¢ [2], where R;
is the cyclotron radius. The commensurability oscillations were investigated for the
first time by Weiss ef al [1], but the dependence of these oscillations on the period
of the lattice and the form of scatterers were not studied. In our work we report
the detaijled study of the magnetoresistance in the samples with different periods of
the antidot lattice. Figure 3(b) shows the dependence of MR on B in the magnetic
field when commensurability oscillations were observed for different values of d. Two
samples were studied which had different scatterer shapes, but the same lattice pe-
riod (d = 1.3 pm): in one sample the antidots had the usual hole shapes, and in the
other they had ellipse-like shapes of length 0.6 um and width 0.2 gm (top curve in
figure 3(b)). As pointed out above, the mobility of the second sample was two times
lower than in the sample with hole-shaped scatterers. One can see in figure 3(b) that
the MR oscillations shift to higher magnetic field with a decrease in the lattice period.
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Figure 4. Cyclotron diameter in the peaks of oscillations as a2 function of 4. The solid
line is given by: (1) 2RL = d, (2) 2RL = 1.6d, (4) 2Ry = 2.284d, where n is the
number of antidots corresponding to a pinned orbit. Bottom line—2R) = d - c.

Figure 4 shows the dependence of the position of the last oscillation for all periods
and the position of two neighbouring oscillations for samples with periods d = 1.3,
0.9 and 0.8 um. We see that the positions of these oscillations are in agreement
with those caiculated from the commensurability conditions (solid lines in figure 4):
2R, =d—¢, 2R =d, 2R, = 1.6d, 2R = 2.284d [1,2]. However, for oscillations
at lower magnetic field this classical picture does not describe the experiment. We
see that, for the sample with period d = 1.3 um (figure 3(b), second curve from
the top), the first magnetocorductance oscillation at low magnetic field appears when
2R, = 148 um, ie. the cyclotron diameter is 11 times larger than the period of
the lattice. Calculation of all possibie trajectories for this value of cyclotron diameter
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gives a very smal! number of commensurable pinned electron orbits with a negligibly
small contribution to the conductivity {1,13). For the sample with lattice period
d = 09 pm, the first oscillation has a maximum when 2R, = 6.2 um, which is
also not in agreement with the classical description of commensurability oscillations.
Decreasing the period to 0.6 gm (figure 3(b}), only two oscillations are observed: the
oscillation at higher magnetic fields has 4 maximum when 2R; = d and the second
when —2R; == 3.8d. It should be noted that with decreasing electron density and
increasing antidot diameter the second anomalous oscillation shifts to higher fields
and disappears [2]. We also see this in figure 3(b) for the samples with period d =
1.3 um. For the sample with elliptical shaped scatterers we see only two oscillations:
the oscillation at higher magnetic fields has a maximum when 2R; = d, and the
second when 2R; = 3.4d. However, for the sample with hole-shaped scatterers, as
pointed out above, anomalous oscillation was observed when 2R; = 11.4d. Thus,
the position of the anomalous oscillation depends on the diameter or the size of
the antidots. Also the dependence of the maximum of the anomalous oscillation on
the period (for a constant diameter of antidots) is given by B™** ~ 4%, not by
Bmex . d, as for commensurability oscillations. Thus these anomalous oscillations
provide proof in favour of the electrons being trapped by the periodic lattice not only
for commensurability conditions. It should be noted that ballistic transport through a
periodic lattice of antidots could be chaotic. As has been shown in two-dimensional
cross-junctions electrons have long dwell times {14]. The chaotic nature of transport
in antidot Jattices can be responsible for anomalous oscillations in the magnetic field.
Further theoretical work on systems with periodic arrays of scatterers is required.

In conclusion, we have studied two types of magneto-oscillations: quantum os-
cillations due to the infiluence of the magnetic field on the phase of the electron
wavefunction (Aharonov-Bohm oscillations); and the classical oscillations due to the
commensurability of the cyclotron diameter and the lattice periocd. We have found
anomalous oscillations, the behaviour of which is not in agreement with classical
description.

We thank H Raith for the ‘ELPHY’ system used in the electron beam lithography,
M V Entin for valuable discussion and V G Plyuchin for carrying out the plasma
etching.
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